Acta Cryst. (1996). C52, 2890-2891

Diethyl 3-Piperidino-2,7-cycloheptadiene-1,2-dicarboxylate

Süheyla Özbey,^a Alime Temel,^a Nazan Tunoğlu^b and Nesimi Uludağ^b

^aDepartment of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ^bDepartment of Chemistry, Hacettepe University, Beytepe 06532, Ankara, Turkey. E-mail: sozbey@eti.cc.hun.edu.tr

(Received 26 April 1996; accepted 19 June 1996)

Abstract

The 2,7-cycloheptadiene moiety of the title compound, $C_{18}H_{27}NO_4$, has a *cis,cis* configuration. The piperidine ring adopts an almost-ideal chair conformation.

Comment

Enamines comprise an important class of compounds. Derived from cyclic ketones, they undergo [2+2]cycloaddition reactions with electron-deficient acetylenes, producing a ring enlargement by two C atoms (Brannock, Burpitt, Goodlett & Thweatt, 1963, 1964; Reinhoudt & Kouwenhoven, 1974, 1976). The reaction proceeds through the formation of an intermediate cyclobutene adduct that undergoes rearrangement with expansion of the carbocyclic ring. A wide variety of products can be obtained by changing the type of cyclic enamine and the acetylene (Reinhoudt et al., 1984). Also, the polarity of the solvent used influences the route of the reaction. Pyrolidine, piperidine and morpholine enamines of cyclic ketones, such as cyclopentanone, cyclohexanone and α -tetralone, may react with diethyl acetylenedicarboxylate (DEAD) under mild conditions to afford the corresponding cyclobutene adduct and, in certain cases, the fused cyclobutenes undergo thermal isomerization to yield cyclic dienamines. We report here the crystal structure of the thermal rearrangement product, (I), of the cycloadduct obtained by the reaction of 1-piperidinyl cyclopentene with DEAD.

The structure determination of the title compound, (I), showed that the heptadiene moiety has a *cis,cis* configuration. The torsion angles for the C==C==C

part of the seven-membered ring are C2—C1=C7— C6 = 1.6 (3), C3=C2—C1=C7 = 41.5 (3) and C1— C2=C3—C4 = 13.8 (2)°. These values are indicative of a *cis,cis*-1,3-diene moiety with little conjugation between the double bonds [C1=C7 = 1.332 (3) and C2=C3 = 1.379 (3) Å]. The C1—C2 and C6—C7 bonds are somewhat shorter than a single C—C bond (Table 2). The torsion angles and bond lengths may be compared with those of methyl 2-(1-pyrrolidinyl)-*cis,cis*-1,6-cycloheptadiene-1-carboxylate (Vos *et al.*, 1986) in which the corresponding torsion angles about the double bonds are 4.0 and -20.3° , and the double-bond lengths are 1.334 (2) and 1.396 (2) Å.

The piperidine ring has an almost-ideal chair conformation. The perpendicular distances of the two chair atoms in *para* positions, N1 and C16, from the plane of the other four atoms of the six-membered piperidine ring are 0.630 (2) and -0.659 (3) Å, respectively, close to the expected value of 0.726 Å. In the piperidine ring, bond lengths and angles agree well with those reported by Herbstein, Schwotzer, Addae-Mensah, Torto & Woode (1981) and Bellver & Lopez-Castro (1990).

The carboxylate groups are oriented with torsion angles C3—C2—C8—O2 = -159.2(1) and C7—C1—C11—O4 = $-156.1(2)^{\circ}$

Fig. 1. ORTEP (Johnson, 1965) drawing of $C_{18}H_{27}NO_4$ with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii.

Experimental

1-Piperidinocyclopentene was allowed to react with an equimolar amount of diethyl acetylenedicarboxylate (DEAD) in benzene at 278–280 K for 2–3 h, after which the solution was refluxed for 4 h. The solvent was evaporated and the remaining material was purified by column chromatography [ethyl acetate-toluene (1:1)]. The solid was recrystallized in hexane; yield: 43%, m.p. 329 K.

Crystal data

 $C_{18}H_{27}NO_4$ $M_r = 321.416$ Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Acta Crystallographica Section C ISSN 0108-2701 © 1996

	Monoclinic	Cell parameters from 23	O4—C12	1.452 (2)	C6—C7	1.480(3)
	$P2_1/c$	reflections	NI-C3	1.373 (2)	C9—C10	1.486 (4)
	a = 12274(1) Å	$\theta = 8 - 18^{\circ}$	NI-CI4	1.462 (3)	C12—C13	1.444 (4)
	L = 12.27 + (1) R	$u = 0.083 \text{ mm}^{-1}$	NI-CI8	1.456 (3)	C14—C15	1.503 (2)
	b = 8.080(1) A	$\mu = 0.065 \text{ mm}$	$C_1 = C_2$	1.473 (3)	C15—C16	1.504 (3)
	c = 19.097(2) A	I = 295 K	C_{1}	1.332 (3)	C16—C17	1.517 (4)
	$\beta = 108.24(1)^{\circ}$	Prism		1.483 (2)	C17—C18	1.503(2)
	$V = 1800.1(3) \text{ Å}^3$	$0.60 \times 0.32 \times 0.24 \text{ mm}$	C8—O2—C9	115.1 (2)	C5—C6—C7	111.5 (2)
	Z = 4	Colourless	C11-04-C12	116.3 (2)	C1—C7—C6	123.0(2)
	$D = 1196 M_{\odot} m^{-3}$	000000000	C3N1C14	122.8 (2)	O1—C8—O2	121.3 (2)
	$D_x = 1.180$ Mg m		C3	123.3 (2)	O1_C8_C2	127.5 (2)
	D_m not measured		C14—N1—C18	113.0(1)	O2—C8—C2	111.3 (2)
			C2-C1-C7	121.8 (1)	02—C9—C10	107.8(2)
	Data collection			121.0 (2)	03-01-04	122.6(2)
	Enraf-Nonius CAD 4	$P_{\rm c} = 0.011$		117.0(2)	03-C1-C1	125.3 (2)
		$R_{\text{int}} = 0.011$	$C_1 = C_2 = C_3$	119.2 (2)	04 - 01 - 01	112.0(2)
	diffractometer	$\theta_{\rm max} = 23.2^\circ$	$C_1 = C_2 = C_0$	110.1 (2)	04	108.0(2)
	$\omega/2\theta$ scans	$h = 0 \rightarrow 8$	$N_1 = C_2 = C_2$	122.0(2) 1244(2)	Ci4-Ci5-Ci6	111.1(2) 110.8(2)
	Absorption correction:	$k = -13 \rightarrow 13$	N1 - C3 - C4	116.7(2)	CI5-CI6-CI7	110.0(2)
	none	$l = -21 \rightarrow 21$	C2_C3_C4	118.5 (2)	C16-C17-C18	111.9(2)
	5509 measured reflections	3 standard reflections	C3C5	112.1 (2)	N1-C18-C17	110.8 (2)
	4655 independent reflections	fraquency: 120 min	C4—C5—C6	111.8 (2)		,
	2657 shared a f	inequency 120 min	A 11 TT .			
	2657 observed reflections	intensity decay: 0.1%	All H atoms were	located ge	cometrically 0.95 A	from their
	$[I > 2\sigma(I)]$		parent atoms and re	efined; displ	lacement parameter	s were fixed
			at $1.3U_{eq}$ of the pa	rent atom.		
	Refinement		Data collection:	CAD-4 EX	PRESS (Enraf-No	nius, 1993).
	Definement on F	$(\Lambda/-)$ 0.01	Data reduction: Ma	IEN (Fair 1	990) Program(s)	sed to solve
		$(\Delta/\sigma)_{max} = 0.01$	structure: MolEN	$\mathbf{Program}(s)$	used to refine struc	stures I CEM
$\kappa = 0.0425$ $\Delta \rho_{\text{max}} = 0.20 \text{ e A}^{-3}$ subtraction. Molecular Holgianness used to remne structure in the structure						
	$\nu R = 0.0433$ $\Delta \rho_{min} = -0.28 \text{ e A}^{-3}$ in <i>MolEV</i> . Molecular graphics: <i>ORTEP</i> (Johnson,			n, 1965) in		
	S = 1.22	Extinction correction: none	MolEN. Software used to prepare material for publication:			
	2657 reflections	Atomic scattering factors	MolEN.			
	289 parameters	from International Tables				
	U otomou ooo toxt	for V and Countelles	The outhors wi	ch to ool-	outladay the more	hass of the
	n atoms: see text	jor X-ray Crystallography	The authors wish to acknowledge the purchase of the			

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1385). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bellver, C. & Lopez-Castro, A. (1990). Acta Cryst. C46, 1848-1850. Brannock, K. C., Burpitt, R. D., Goodlett, V. W. & Thweatt, J. G. (1963). J. Org. Chem. 28, 1464-1468.
- Brannock, K. C., Burpitt, R. D., Goodlett, W. W. & Thweatt, J. G. (1964). J. Org. Chem. 29, 818-823.
- Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1 Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Herbstein, F. H., Schwotzer, W., Addae-Mensah, I., Torto, F. G. & Woode, K. A. (1981). Acta Cryst. B37, 702-705.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Reinhoudt, D. N. & Kouwenhoven, C. G. (1974). Tetrahedron Lett. 29, 2503-2506.
- Reinhoudt, D. N. & Kouwenhoven, C. G. (1976). Recl. J. R. Neth. Chem. Soc. 95, 67-73.
- Reinhoudt, D. N., Verboom, W., Visser, G. W., Trompenaars, W. P., Harkema, S. & Hummel, G. J. (1984). J. Am. Chem. Soc. 106, 1341-1350.
- Vos, G. J. M., Benders, P. H., Reinhoudt, D. N., Egberink, R. J. M., Harkema, S. & Hummel, G. J. (1986). J. Org. Chem. 51, 2004-2011.

Refinement on F	$(\Lambda/\sigma) = 0.01$
	$(\Delta/0)_{max} = 0.01$
R = 0.0425	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0433	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.22	Extinction correction: n
2657 reflections	Atomic scattering facto
289 parameters	from International Ta
H atoms: see text	for X-ray Crystallog
$w = 1/[\sigma^2(F_o^2) + (0.04F_o^2)^2]$	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	х	у	z	Bea
01	0.5802(1)	0.3332 (2)	0.13852(7)	4.95 (3)
O2	0.69585 (9)	0.1769 (2)	0.09532(6)	4.18 (3)
O3	0.8433 (1)	-0.1853 (2)	0.19765 (9)	6.94 (5)
04	0.7890(1)	0.0447 (2)	0.24203 (7)	5.05 (4)
N1	0.3701(1)	0.1215 (2)	0.12180(8)	4.00 (4)
Cl	0.6462(1)	-0.1055 (2)	0.15510(9)	3.52 (5)
C2	0.5683 (1)	0.0377 (2)	0.14288 (9)	3.14 (4)
C3	0.4620(1)	0.0192 (2)	0.15224 (9)	3.53 (4)
C4	0.4396 (2)	-0.1340 (3)	0.1911(1)	4.46 (5)
C5	0.4109 (2)	-0.2835 (3)	0.1399(1)	5.47 (6)
C6	0.4872 (2)	-0.2925 (3)	0.0902(1)	4.91 (6)
C7	0.6085 (2)	-0.2565 (3)	0.1317(1)	4.41 (5)
C8	0.6106(1)	0.1971 (2)	0.12621 (9)	3.64 (5)
C9	0.7564 (2)	0.3257 (3)	0.0890(1)	5.40 (6)
C10	0.8522 (2)	0.2791 (3)	0.0608(1)	7.50(7)
CII	0.7691 (2)	-0.0892 (3)	0.1985(1)	4.49 (5)
C12	0.9082 (2)	0.0783 (4)	0.2830(1)	7.15(7)
C13	0.9112 (2)	0.2143 (4)	0.3325 (2)	10.9 (1)
C14	0.2873 (2)	0.1650 (3)	0.1596(1)	4.96 (6)
C15	0.1663 (2)	0.1467 (3)	0.1092(1)	6.57 (7)
C16	0.1474 (2)	0.2486 (4)	0.0405(1)	7.22 (7)
C17	0.2364 (2)	0.2050 (3)	0.0035(1)	5.14 (6)
C18	0.3565 (2)	0.2192 (3)	0.0556(1)	4.56 (5)

Table 2. Selected geometric parameters (Å, °)

01-C8	1.209 (2)	C2—C3	1,379 (3)
O2—C8	1.362 (2)	C2C8	1.461 (3)
O2—C9	1.439 (3)	C3C4	1.513 (3)
03-C11	1.201 (3)	C4—C5	1.525 (3)
04—C11	1.341 (2)	C5C6	1.530 (3)